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Abstract. In the regime of linearly independent patterns we derive, using normal farms, 
analytical expressions for neural interaction which improve upon the projector rule ( in  the 

IO the unique fixed-point of a nonlinear differential equation, the Row of which can be 
related to one of our expressions. 
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1. Introduction 

The proposal of Little [ l ]  and Hopfield [Z] to model neural networks as king spin 
systems, as well as the work of Amit, Gutfreund and Sompolinsky [3] (who were the 
first to systematically show this proposal to be extremely fruitful) have focused the 
attention of many physicists on statistical mechanical studies of neural network models 
[4]. Since Gardner published her paper on the space of interactions [ 5 ]  two particular 
problems have been studied intensively [6]: the problem of calculating upper hounds 
for the performance of neurai networks as pattern storage devices, and (as a con- 
sequence) the problem of finding neural interactions which saturate these bounds 
(optimal interactions). Unfortunately, it has not yet been possible to derive analytical 
expressions for optimal interactions; one has to resort to iterative procedures, described 
by learning rules [ 5 ,  7-91, in order to find the optimal interaction strengths. Because 
of the highly nonlinear nature of these learning rules one cannot study analytically 
LK wu~uuun 01 I I I I C L ~ C L I V ~ ~ ~  W I I K I I  iriey grrrciatc. tu IIIUSL unr ~ a r i  UL-LIVS s>~iiiiaies 
for learning times as well as alternative formulations of the problem [lo, 111. 

What is required of an interaction matrix is that a (large) number p of given N-bit 
patterns (microscopic network states) be fixed-point attractors under the dynamics of 
the corresponding network. An indirect measure ofthe sizes ofthedomains ofattraction 
is given by the so-called stability parameters, which are simple functions of both the 

the problem of finding optimal interactions into an optimization problem: finding the 
matrix for which the smallest ofthese stability parameters is maximal. Instead of trying 
to tackle this unsolved problem directly, our strategy will be less ambitious, and we 
will first try to find out how one can improve upon suh-optimal interaction matrices 
for which analytical expressions do exist. The projector matrix [l2-14] seems to be 
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most powerful of these sub-optimal matrices. This connection matrix was shown to be 
able to stablize any set of linearly independent patterns. Those generalizations of the 
projector matrix which have been suggested in the literature [I51 were aimed at 
improving generalization properties; they did not provide an improvement in terms of 
pattern stability. The restriction to linear independence appears to be very fundamental, 
in view of the fact that individual neurons can only perform linear separations, It is 
our belief that, before trying to find solutions in the complicated regime of linearly 
dependent patterns, one should first work on solid ground (linear independence), in 
the hope that a solution which significantly improves upon the projector matrix might 
possibly be extended to the complicated regime. 

In this paper we consider only the storage of linearly independent patterns. By 
introducing a normal form we first derive analytical expressions for all optimal interac- 

pattern-independent (which is a property of the projector matrix). We show that all 
matrices in this class are completely equivalent in terms of stability parameters and 
that the projector matrix is the only symmetric member. Next, by breaking the pattern 
symmetry, we construct interaction matrices for which at every site the smallest of the 
stability parameters is significantly larger than the stability parameter of the projector 
matrix. Finally we use the normal form to show that, for linearly independent patterns, 
optimal interactions correspond to the unique fixed-point of a nonlinear differential 
equation, whose initial flow direction is directly related to one of the proposed matrices. 

+inn -..tr;mr ..,h:rh i n  o,4rl:t:n.. .ot:rF.. rhn rnn~+r-int tho+ thn c + n h i l : + x .  -----e...-- Ira 
L l V . .  111'A11.-u3 W...I.., L.' YY" .L ,V I I ,  > Y L . * , J  ,I 1.. " " I . I L I Y 1 . I .  L I I e . ,  L I l C  "L',Y.LLL.' p'ua",L,C,J "C 

2. A normal form for neural interactions 

Our aim is to find all N x N matrices J such that for a given set of p N-dimensional 
vectors cw (patterns, or specific microscopic spin states): 

y .  zp = 1 J ;  f r  j + i  1 J & > O  foral l  i , p  (1) 

where 

f:E{-1,11 h = l , . .  , , p  i , j = I  ,..., N. 

In this section we derive a normal form for the solutions of ( l ) ,  which is also valid in 
the case of linearly dependent patterns. First we will adopt the following conventions 
with regard to notation 

t*G(ff,. . . , C$)€{-l, 11N 

&! = (0,. . . , f f )  E {-1, I]! 

The yir are the usual stability parameters [ 5 ] ,  which are an indirect measure of the 
stability of pattern 1.1 at site i. Since the problem decouples for the different values of 
i we can write problem (1) as: find all vectors J ( i ) ,  so that U;& > 0 for all (i, 1.11, where 

U!, = J (  i )  ' vJ'( i )  (2) 

and 

J ( ~ ) Z ( J ; ~  ,..., J,  ,_,, Jii+ ,,..., J , , )€RN- '  
..",>,- >U,?" ru  ..U w t r  I I 11N-1 ,  
11 \ l l = 5 i  151,. .. , 5!-1,5;+1,. . , r S N J C 1 - l r  ' J  
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The relation between a;, and ylr is given by 

Since (2) is a linear problem, it  can be solved easily. If a solution exists, it is given by 

where: 

All interaction matrices with strictly positive stability parameters are of the above form. 
However, the converse does not necessarily hold: not all matrices of the above form 
need to have positive stability parameters. For the standard form (3) we can express 
the stability parameters in terms of the parameters ai,, 

where 

a * , A  = E  5:P(l)Apal,5? ( 5 )  
P 

and P ( i )  is the projection on K, 

K2=(6i,. . . , Ct-i3 6 , + i 3 . ,  , I C N ) C  RP.  
It is clear from (4) that adding a perpendicular part J '  always reduces the stability 

:̂̂ ^^ -̂1-1:.." ,A ,̂ ",I" ^..I..... :.. tL. ..."-...:*..Â  ..C.L- "."t_:_ pLl,d,,,.A.as, >,,,CO 'l"U"1~ J LCLUJ U M y  L U  all IIICICLIJG 111 L l l C  L " c L ~ " 1 L " " =  Yl Lllci lllallln 

elements of J. For this reason optimal interactions must have J L  = 0: 

a*,, =Z f:P(i)A,a,,6t. 
c 

It is important to emphasize that an eventual choice for the parameters a,, may 
depend on the specific patterns that are to be stored. In fact, this freedom of choosing 
the parameters as specific functions of the patterns (instead of a priori assigning fixed 
values to the a,,,) will enable us to improve upon the projector matrix. 

3. Linearly independent patterns 

In the case of linearly independent patterns K, = R P  and our results become very 
simple (for P ( i ) = l  and thus a*,A=a,A): 

1 
I,, = ( 1 - s,,) 1 a&c(;)i! 5; (8) 

II I, 
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Exploring the space of all matrices with positive stability parameters is now completely 
equivalent to varying the parameters a,, (a,* > 0). 

To see how the projector matrix fits into this scheme we now, in addition, impose 
the constraint y,A = 7, > 0. If the stability parameters are required to be independent 
of the pattern index, the equations become 

1 
J,  = ( I  - 8 v ) a r ~ ( 6 , . C ( i ) - ' & )  (10) 

We define the correlation matrix C as 

From 

so (IO) can be written as 

By choosing a;' = l+l /N&,C(i)- 'c , ,  (12) reduces to the definition of the projector 
matrix. Apparently (IO) describes a family of matrices which can be constructed from 
the projector matrix by rescaling rows. As a consequence the stability parameters (11) 
are those which correspond to the projector rule. It is a trivial matter to prove that 

scaling factor). 
*L ---^ :--* ^__.. ,..:-&L..--,.." ..-- e+-:,.-..*-:.. -<*l."C,.-- ,In\ ,.A:"-..-"->:-"" 
L 1 1 S  p ' L u J C L L u L  lUlC 1J L , , ~  u u , y  JyL""1cL"c III*LLL* U, L U C  lull,, {'"I (",J,Cg*LU"l~ all U Y C L ' U l  

4. Broken pattern symmetry 

We found that if the constraint yiA = yi is imposed it is no! possib!e to improve zpon 
the projector matrix; the latter appeared to be simply the symmetric member of the 
family of interactions which are optimal with respect to the constraint y,* = yj. This is 
consistent with the picture depicted by Abbott and Kepler [16], who imposed the 
peaked distribution of stabilities as constraints in N +  m Gardner calculations and 
found that near criticality there is no way to improve upon the projector rule. Here 

projector matrix, we have to abandon the constraint and allow for stability parameters 
which are pattern dependent. First we rewrite (9) 

1 

Y C  find !ha! !his S!a!CmCn! is a!so true for fini!e .N. !f!he aim is to imprrove upon the 

(13) 2 -  - 3  y ;  - a i ; -  1 t:c:.'ai,a,.C(i);:. 
N *" 
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The smallest stability yr for a given site i is found by taking the index p of the smallest 
component of the vector ai 

VA: yiA L yw if VA: a, L alp. 

Since (13) is not sensitive to rescaling lai/ and since (according to (9)) we are only 
interested in positive asp,  we can choose a scale where 

aip = i and V A :  a j A >  i 

or 

a, = 1 + EjA L 0 3 p :  Ej0 = 0. (14) 

We can now write the smallest stability y,,min= yjn (for a given site) as 

( 1 5 )  
2 1 

N Y "  

y - 2 .  = y-* ,.pro+- 1 c?f rc( i ) ; t&, ,+~~ t? t rc( i ) ; t~~,~~,  

where Y ~ , ~ ~ ~  the stability parameter (11) of the projection matrix. This expression is 
still completely general. Each choice of E,  in accordance with (14), specifies a model 
which stabilizes the patterns. Optimal interactions correspond to the optimal choice 
of E ~ ,  i.e. the choice for which the right-hand side of (15)  is minimal. The pattern- 
symmetric solutions correspond to taking E ;  = 0. We improve upon the pattern- 
symmetric (projector) solutions if 

(16) 
1 

N +,, 
-2x;. E ,  +- 1 t r t r C ( i ) ; : E i p E i "  < 0 

where 

1 
N x, = -- cy( C(i)-160*, 

Since the second term in (16) is always positive, the first term has to be chosen negative. 
TL:" r:-..ln . . , n . r  h m o L  thn m ~ t t a m  C.I--PIIII ,,,,a J Y 5 6 C J L "  lCLLllCl  'I "."1p,C ""J L" Y l b Y h  L l l r  y Y L L b 1 I I  "JL" ."CLLJ  

€ill = E i f ( X J  (17) 

where E ,  is positive scaling factor (to be determined later) andf i s  an arbitrary function 
which obeys f ( x )  > 0 for x > 0 and f ( x )  = 0 for x < 0. First we must ensure that our 
choice (17) is in accordance with (14). By definition, all E,,. are non-negative and there 
will be at least one E;* equal to zero, since: 

1 1 xis = -- 6, ' c(i)-'g <0 
LL N 

(because C ( i )  is positive definite). Next we must check whether (17) does not simply 
give the trivial E ! = O ,  i.e. we must be sure that not all xir are negative. Suppose, 
however, that all xj,, were indeed negative, it would then follow that (16) could have 
no solutions at all, since both terms of (16) are non-negative. This, in turn, means that 
E ; = O  is the optimal choice and that there is no interaction matrix which improves 
upon the projector rule. We can safely proceed; if improvements upon the projector 
rule exist (which is obviously the case for randomly drawn patterns [5,6]), then E ,  # 0. 
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Finally we must prove that the inequality (16) is satisfied. To show this we must first 
find the optimal choice of the overall scaling factor E~ 

1 
- 2 ~ ; .  E ? + -  1 ~ f ~ 1 C ( i ) ; : E i , e i , . = - 2 & ; A , + e j B i  

N P" 

= B,(ei -A,/B,)* - AT/B, 
where 

A, E Z xr,f(x;,) (18) 
Jt  

1 
Bi =- Z C G C ( i ) ; ; , f  (xj,)f(xjJ (19) 

(if  E~ # 0, then both Ai > 0 and Bj > 0). The optimal choice for E~ is found to he 
E~ = Ai /B, ,  and, furthermore, with this choice for E ;  we always satisfy (16). We can 
now summarize our results. If connection matrices exist which improve upon the 
projector matrix, then for any function f ( x )  which satisfies 

N *" 

f ( x ) > O  f o r x > O  a n d  f ( x ) = O  f o r x < O  (20) 
we can construct the following matrix, for which a t  each site i the smallest stability 
parameter is larger than the corresponding stability parameter of the projection matrix: 

where 

For randomly drawn patterns and large networks ( N  + m) the stability parameters of 
the projector matrix vanish at the critical point a = 1 (as soon as the patterns become 
linearly dependent). This means that near criticality the proposed expression (21) will 
only be a significant improvement if the second term on the right-hand side of (22) 
diverges in the same way as y&. If this turns out to he the case, then (21) is not only 
an improvement of the projector matrix, but it also belongs to a different universality 
class [16]. Furthermore one might expect the specific choice of the function f (x) to 
become irrelevant (in the limit N-too) and both (18) and (19) (and thus the amplitude 
E ; )  to be self-averaging (i.e. functions of the ratio a = p /  N only). 

Specific examples 

As an  illustration of the behaviour of (21) we will now make some explicit choices 
for the function f ( x ) .  One of the simplest choices would be f(x)=x"O(x) ( n  is not 
necessarily an integer), which would give 

Because of the step-function it is extremely difficult to average (parts of) this expression 
over the pattern components, which would be the usual procedure (assuming (23) to 
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be self-averaging for N + m). Therefore we have done numerical calculations of the 
stability parameters (for n = O  and n = 1 and for randomly drawn patterns), which can 
be compared to the projector matrix results. 

Figure 1 shows a histogram of the distribution p ( y )  of stability parameters for 
N =200 and U ranging from 0.6-1.0 (step size a: 0.1). For a a 1 the inverse of a 
correlation matrix is replaced by the pseudo-inverse, according to (9). Clearly, for 
N=200 both the n=O and the n =  1 matrix yield stability parameters which are 
significantly larger than the corresponding quantities of the projector matrix. Figure 
1 also indicates that the transition from the U < 1 regime to the U > 1 regime is less 
dramatic for the n = 0 and n = 1 matrices than for the projector matrix. This is 
emphasized by figure 2, which shows the distributions of the stability parameters near 
the critical point 01 = 1.  

Figure 1. Distribution p ( y )  of stabilities for N = 200 and randomly drawn patterns. From 
lefttoright: a=1.0, a=0.9,  a=0.8,n=0.7,~?=0.6.  

Figure 2 shows that above the critical point LY = 1 all matrices fail (since all y's 
were required to be positive). The distribution p ( y )  of the projector matrix becomes 
practically flat as soon as the patterns become linearly dependent; for the n = O  and 
n = 1 matrices the collapse is less dramatic. However, one cannot yet conclude that 
the latter matrices do not belong to the universality class of the projector rule; such a 
conclusion could only be drawn if a detailed study were to he made ofthe N-dependence 
of the distributions p ( y ) .  The proposed constructions are still far from being the 

:he rcsu!ts showr, j" 

figures 1 and 2 with the N + m smallest stability y , , , d a )  of the optimal matrix, as 
given by Gardner's [SI expression: 

opiima; coiiiieciion maiiix: ibis iBii be sciii if oiii 
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Figure 2. Distribution p ( y )  of  stabilities far N =ZOO and randomly drawn patterns near 
the critical point a = 1.  

This expression predicts ~ ~ ~ ~ ( 0 . 6 )  ~ 0 . 8 7 5 ,  ~ ~ ~ ~ ( 0 . 7 )  ~ 0 . 7 4 7 ,  ~ ~ ~ ~ ( 0 . 8 )  ~ 0 . 6 4 0 ,  
y,,,(0.9)=0.549 and ymi.(l.0)=0.471. 

(the average over all 
patterns and all sites). In figure 3 we have drawn the average of this quantity 7 over 
two N = 200 trials for a E [0, 11. For a i 0.5 the difference between the results of the 
three models is negligible. For a > 0.5, however, the n = 0 and n = 1 curves are again 

Finally we studied the behaviour of the average stability 

Figure 3. Average stability 7 for N = 200 as a function of ol (averaged over two trials of 
randomly drawn patterns and over all site- and pattrm-indices) for n = 1 matrix (upper 
curve), n = O  matrix (middle curve) and projector rule (lower curve). ( a )  a € [ O ,  I]; 
( b )  close-up near the critical point. 



Analytical expression for neural interactions 2673 

clearly above the projector matrix curve (the n = 1 average stability being highest). 
Nevertheless, in all three cases T + O  for a + 1 .  

6. Optimal symmetry breaking 

According to (15), in the regime of linearly independent patterns optimal interactions 
are found by solving the optimization problem: 

Q ( E )  = (1,. . . , I ) .  AE is minimal 

for all p, 3 p :  E p = O .  

All local minima of Q are solutions of 

V p :  E ~ = O  and z A , , ( ~ ~ + l ) a O  or E ( , > O  and I A p A ( ~ , , + l ) = O .  ( 2 5 )  

There can only be one local minimum, for if we assume that at least two such minima 
E '  and E" exist, then we can construct a path E ( A )  from E '  to E "  (the allowed region 
is convex) 

( A 1 (  1 

E ( A )  = E ' +  A ( E " -  E ') A E [O,ll 

Q(A) = Q(O)+A(E"- E ' ) ,  A ( (1 , .  , . , 1 )  + E ' )  + + A * ( E " -  &')A(&''- E ' )  

It is clear that Q(A) can never have a local maximum, which it would have bad if both 
A = O  and A = 1 were to correspond to local minima of Q. We can conclude that there 
can only be one local minimum, so there is only one solution of (25). The corresponding 
value of Q would be Q ( & ) = f & . A ( l , .  . . , 1 ) .  We will now denote by S the set of all 
indices p for which E,, = 0. If we write As for the ( p  - IS/) x ( p  - /SI) matrix which can 
be constructed from A by taking only entries corresponding to indices which are not 
in the set S, we find 

(26) 

(note that A being positive definite implies that A, is invertible). We can now write 
our problem as follows: find the unique index set S for which (26) is the solution of 

~ L E  S: E,, = O  (by definition) 

W ) ,  or 

Since there is only one local minimum of Q we can also find this minimum as the 
fixed point of the differential equation which describes constrained gradient descent 
on the surface Q 

d 
- & * = - ( A [ &  + ( I , .  . . , ~ ) I ) , ( ~ ' ( E ~ ) + ( ~ - B ' ( E ~ ) ) B + ( - ( A [ E  + ( I , .  . . , 1 ) 1 , ) ) )  
dt (27) 
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where 

O'(x) = o  f o r x s 0  

for x z 0. O'(x) = 1 

Close inspection reveals that the n = 1 matrix, defined in section 4, can in fact be 
obtained from (27) by choosing as an estimate of the fixed point a vector proportional 
to (d /df )e I ,=u  (taking ~ ( 0 )  = O ) .  Unfortunately we were not able to find an analytical 
expression for the fixed-point of (27). 

The optimization problem (24) is equivalent to the one formulated by Opper [lo]; 
however, the physical meaning of the solution is different. In [lo] the trivial critical 
point E = 0 corresponds to the matrix J ,  = 0, whereas in (24) the trivial critical point 
corresponds to the projector matrix. 

7. Discussion 

Using a normal form we have derived analytical expressions for neural interaction 
matrices which improve upon the projector rule, restricting ourselves to the regime of 
linearly independent patterns. We have numerically compared the outcome of these 
matrices with the outcome of the projector rule with respect to the distribution of the 
stability parameters and the average stability (for N =200 and randomly drawn pat- 
terns). The results indicate that the improvement obtained is most significant near the 
critical point a = 1. Finally we have used the normal form to show that optimal 
interactions correspond to the unique fixed-point of a nonlinear differential equation, 
of which the f = 0 flow direction is directly related to one of the proposed matrices. 

The proposed constructions may serve as a first step towards finding an analytical 
expression for optimal interactions. A next step could be either to further elaborate 
our scheme for breaking the pattern symmetry in the regime of linearly independent 
patterns, or to try to find an extension of the proposed constructions in order to handle 
linearly dependent patterns. It would also be interesting to see how our matrices deal 
with biased patterns and to find out, in the limit of extreme bias, how they compare 
with powerful models like the one formulated by Willshaw 117-191. 
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