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Abstract. In the regime of linearly independent patterns we derive, using normal forms,
analytical expressions for neural interaction which improve upon the projector rule {in the

apmanthat all ctnhilite maramantars oea loroarl Momtinesl imtarn adiang ana ohoatgn toa cmreacmand

sCnise Lnatl an staciity paraimdcicrs arc 1arger). Uplima: iniCraclions aie suown to Correspona
to the unique fixed-point of a nonlinear differential equation, the flow of which can be
related to one of our expressions.

1. Introduction

The proposal of Little [1] and Hopfield [2] to model neural networks 2s Ising spin
systems, as well as the work of Amit, Gutfreund and Sompolinsky {3] (who were the
first to systematically show this proposal to be extremely fruitful) have focused the
attention of many physicists on statistical mechanical studies of neural network models
[4]. Since Gardner published her paper on the space of interactions [5] two particular
problems have been studied intensively [6]: the problem of calculating upper bounds
for the performance of neural networks as patiern storage devices, and {as a con-
sequence) the problem of finding neural interactions which saturate these bounds
{optimal interactions). Unfortunately, it has not yet been possible 1o derive analytical
expressions for optimal interactions; one has to resort to iterative procedures, described
by learning rules [5, 7-9], in order to find the optimal interaction strengths. Because
of the highly nonlinear nature of these learning rules one cannot study analytically
the evolution of interactions which they generate. At most one can derive estimates
for learning times as well as alternative formulations of the problem [10, 11].

What is required of an interaction matrix is that a (large) number p of given N-bit
patterns (microscopic network states) be fixed-point attractors under the dynamics of
the corresponding network. An indirect measure of the sizes of the domains of attraction
is given by the so-called stability parameters, which are simple functions of both the

ponnactinn mateiy and tha hitg af tha nattarne ta he gctarad Thig hae in fart tiyrmad
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the problem of finding optimal interactions into an optimization problem: finding the
matrix for which the smailest of these stability parameters is maximal, Instead of trying
to tackle this unsolved problem directly, our strategy will be less ambitious, and we
will first try to find out how one can improve upon sub-optimal interaction matrices
for which analytical expressions do exist. The projector matrix [12-14] seems to be
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most powerful of these sub-optimal matrices. This connection matrix was shown to be
able to stablize any set of linearly independent patterns. Those generalizations of the
projector matrix which have been suggested in the literature [15] were aimed at
improving generalization properties; they did not provide an improvement in terms of
pattern stability. The restriction to linear independence appears to be very fundamental,
in view of the fact that individual neurons can only perform linear separations, It is
our belief that, before trying to find solutions in the complicated regime of linearly
dependent patterns, one should first work on solid ground (linear independence), in
the hope that a solution which significantly improves upon the projector matrix might
possibly be extended to the complicated regime,

In this paper we consider only the storage of linearly independent patterns. By
introducing a normal form we first derive analytical expressions for all optimal interac-

tinn matrinrac whinh in additianm caticfu tha rAanctraint that tha ciahility maramaranc ha
UG MAices winiln, 1 aGiiiln, 3atisry vl LONSITalll Ulal Ui Sidduily paramcicrs o

pattern-independent (which is a property of the projector matrix). We show that all
matrices in this class are completely equivalent in terms of stability parameters and
that the projector matrix is the only symmetric member. Next, by breaking the pattern
symmetry, we construct interaction matrices for which at every site the smallest of the
stability parameters is significantly larger than the stability parameter of the projector
matrix. Finally we use the normal form to show that, for linearly independent patterns,
optimal interactions correspond to the unique fixed-point of a nonlinear differential
equation, whose initial flow direction is directly related to one of the proposed matrices.

2. A normal form for neural interactions

Our aim is to find all N x N matrices J such that for a given set of p N-dimensional
vectors £ (patterns, or specific microscopic spin states):

—-1/2
')J,#E(X ij.) &Y Jgt>0 foralliu (1)
JEi J#=i
where
gel{-1,1} A=1,...,p Lj=1,..., N.

In this section we derive a normal form for the solutions of (1), which is also valid in
the case of linearly dependent patterns. First we will adopt the following conventions
with regard to notation

=gy, ., e, 1)
=&, ..., Ne{-1,1}"

The vy, are the usual stability parameters [5], which are an indirect measure of the
stability of pattern g at site i. Since the problem decouples for the different values of
i we can write problem (1) as: find ail vectors J{i), so that a;, > 0 for all (i, ), where

a,, =J({)-n"(i) (2)
and
JO =, T Jivn, - -5 div) € RN

Y1 1)
s"'agl lng—l:"'!'ng:l 1, 1)
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The relation between a;, and v, is given by

-1/2
a,—H(_ZlJ,z-j) .
TR

Since (2) is a linear problem it can be solved easily. If a solution exists, it is given by

1 n
Jy=(1 SU) zamg*‘ 5 (1—; C(i)) £+ (3)
n=0 I ey
where:
THE=0 >0 Clla=v T etk

All interaction matrices with strictly positive stability parameters are of the above form.
However, the converse does not necessarily hold: not all matrices of the above form
need to have positive stability parameters. For the standard form (3} we can express
the stability parameters in terms of the parameters a;,

. 1 . ) 1 ) n . . —-1/2
71,1:“:)‘(*"2“;.,‘5; ¥ (1 — C(‘)) fr.‘,ﬂip+z -’;}“) (4)
Np o n=6 P v Ji
where
EZ (j)l\paip_g?‘ (5)
o
and P({) is the projection on K;
KiE(gl:' R -TE R §i+l" ' ,gN)CRP'
It is clear from (4) that adding a perpendicular part J“ always reduces the stability

nmnes b one cdman adAdina TL TanAs thoa iAo Af tha maoteiy
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elements of J. For this reason optimal interactions must have J* =0:

l n
B=0-s) g Laes s (1-1cn) ¢ ©
1 n —b/2
Yin = au\(“ﬁ: Z 5,»«52' g (1 _"n‘ C(")) f?&.’,,) (7)

a, =3 £ P( D, £

A

It is important to emphasize that an eventual choice for the parameters a;, may
depend on the specific patterns that are to be stored. In fact, this freedom of choosing
the parameters as specific functions of the patterns (instead of a priori assigning fixed
values to the a;,) will enable us to improve upon the projector matrix.

3. Linearly independent patterns

In the case of linearly independent patterns K;=R” and our results become very
simple (for P(i)=1 and thus d, =a,.):

Jy=(1 ﬁu) Z%f“c( )ik (8)

1 o ~1/2
Yin = aih(ﬁ ¥ oa £ Cl) L& a;p) . (9)
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Exploring the space of all matrices with positive stability parameters is now completely
equivalent to varying the parameters a,, (a;, > 0).

To see how the projector matrix fits into this scheme we now, in addition, impose
the constraint y;, = ;> 0. If the stability parameters are required to be independent
of the pattern index, the equations become

1 _
"l‘j=(1—aij)ai§(§i.c(i) I§J) (10}
1 —i/2
(a1 C ) ¥ .
Y (N§ (i) §) (11)
We define the correlation matrix C as
1 1
Coo=—c £ £ =Cli), +— £4E).
i N i N EX)

From

Cli)=C; +—“(C(i)7'§.-),¢(c_'§.-)v

it follows that

- 1 .\ _
§.“ C(l) lfj =(1 +E f&' C(I) lfi)(gs' C lfj)
so (10) can be written as
“\H}lv_‘-’" ()¢ )l- g, (12)
N
By choosing a;'=1+1/N&- C(i) &, (12) reduces to the definition of the projector
matrix. Apparently (10) describes a family of matrices which can be constructed from

the projector matrix by rescaling rows. As a consequence the stability parameters (11)
are those which correspond to the projector rule. It is a trivial matter to prove that

AF tln Fn i1 n\ .(J-n-n.q.n—,l ing an Arrmanll
the })lUJC\.rLUI. fule is the uun_y ayiuuu:uu, matrix of the form {(10) (OISTEEAraiing aii Overan
scaling factor).

4, Broken pattern symmetry
We found that if the constraint Yia = Vi is imnosed it is not nncci}'ﬂP to imnprove upon

the 1posed 1t is not possible to impr pon
the projector matrix; the latter appeared to be simply the symmetric member of the
family of interactions which are optimal with respect to the constraint y;, = ;. This is
consistent with the picture depicted by Abbott and Kepler [16], who imposed the
peaked distribution of stabilities as constraints in N - oo Gardner calculations and
found that near criticality there is no way to improve upon the projector rule. Here
we find that this statement is also true for finite N. If the aim is to improve upon the

projector matrix, we have to abandon the constraint and allow for stability parameters
which are pattern dependent. First we rewrite (9)

, 1 § .
yrf=a:;§ Y el aga,Ci), (13)
[
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The smallest stability +y,, for a given site i is found by taking the index p of the smallest
component of the vector a;
YA: Yir = Yio if VA: a;, = a,‘p.

Since (13} is not sensitive to rescaling |a;} and since {according to {9)) we are only
interested in positive a;,, we can choose a scale where

a,=1 and Virg,=1
or
afh=]+sf.\ 8,’,\—20 Hp: E,-pﬂo. (14)

We can now write the smallest stability v, mia=7v,, (for a given site) a
2 s sy —1 I e =1
ylmln 7! pro K Z fi fi C(!)“,,E,-H_"‘i'ﬁ Z gi gi C(I)_uvsl',uEiV (15)
FIay Fred

where ;.. the stability parameter (11) of the projection matrix. This expression is
still completely general. Each choice of £, in accordance with (14), specifies a model
which stabilizes the patterns. Optimal interactions correspond to the optimal choice
of g, i.e. the choice for which the right-hand side of {15) is minimal. The pattern-
symmetric solutions correspond to taking &;=0. We improve upon the pattern-
symmetric (projector) solutions if

1 el
—2x;-si+§Z EVEIC(D) 8.8, <0 (16)
frey

where

1 M

W= EHC)TE),

N
Since the second term in (16) is always positive, the first term has to be chosen negative
Tl iramacte rathar rmnla waur ta hraal tha mntfars cummatey
l.l.llB :u55UaLa 14atllwl 1w ¥Y¥a WU Aan b Pﬂll-\vl n O_Yllllll\rl-l

(17}

where g, is positive scaling factor (to be determined later) and f is an arbitrary function
which obeys f(x)>0 for x>0 and f{x}=0 for x <0. First we must ensure that our
choice (17) is in accordance with (14). By definition, all ¢, are non-negative and there
will be at least one ¢, equal to zero, since:

1
Ex.'n= _ng. C(i) l§i<0
(because C(i) is positive definite). Next we must check whether {17) does not simply
give the trivial £ =0, i.e. we must be sure that not all x,, are negative. Suppose,
however, that all x;, were indeed negative, it would then follow that (16} could have
no solutious at all, since both terms of (16) are non-negative. This, in turn, means that
g;=0 is the optimal choice and that there is no interaction matrix which improves
upon the projector rule. We can safely proceed; if improvements upon the projector
rule exist (which is obviously the case for randomly drawn patterns [5, 6]), then g; = 0.
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Finally we must prove that the inequality {16) is satisfied. To show this we must first
find the optimal choice of the overall scaling factor ¢;

1
=2x; 8t Z §$‘§E'C(i);l€m€.-., =-2gA;+ 8%35
N o

= Bi(¢ —A.‘/B.')Z _A?/Bi
where

A=Y x, fx,.) (18)

B ¥ ELE O, (%) (%) (19)

(if £, #0, then both A,>0 and B;>0). The optimal choice for #; is found to be
g; = A;/ B;, and, furthermore, with this choice for £ we always satisfy (16). We can
now summarize our results. If connection matrices exist which improve upon the
projector matrix, then for any function f{x) which satisfies

f{x)>0 forx>0 and f(x)=0 forx<0 (20)

we can construct the following matrix, for which at each site i the smallest stability
parameter is larger than the corresponding stability parameter of the projection matrix:

= — i e sy —1 pwr Zﬂ xipf(xjp
= =a) Y e (140 s §‘.-’E?C(!’)Lﬁf(x:p)f(xm)) e
where
K== E£(CTDE),
Vl., Py ')/;,_25- 'y;gm— (Zp xipf(xr'p)) (22)

/N Epr\ f“;f?C_l(i)z\;f(xip)f(xia\)-
For randomly drawn patterns and large networks ( N - 0) the stability parameters of
the projector matrix vanish at the critical point &« =1 (as soon as the patterns become
linearly dependent). This means that near criticality the proposed expression (21) will
only be a significant improvement if the second term on the right-hand side of (22)
diverges in the same way as ¥; .. I this turns out to be the case, then (21) is not only
an improvement of the projector matrix, but it also belongs to a different universality
class [16]. Furthermore one might expect the specific choice of the function f(x) to
become irrelevant (in the limit N - co) and both (18) and (19) {and thus the amplitude
g;) to be self-averaging (i.e. functions of the ratio & = p/ N only}.

Specific examples

As an illustration of the behaviour of (21) we will now make some explicit choices
for the function f{x}. One of the simplest choices would be f{x)=x"8(x) (n is not
necessarily an integer), which would give

(X, x0'0{x, )’
1/NZ,, &6 CT(0),,00x,)00x,:)x5x5
Because of the step-function it is extremely difficult to average (parts of) this expression
over the pattern components, which would be the usual procedure (assuming (23) to

(23)

2 -2
Yie =%Yipro™
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be self-averaging for N — ). Therefore we have done numerical calculations of the
stability parameters (for n =0 and n =1 and for randomly drawn patterns), which can
be compared to the projector matrix results.

Figure 1 shows a histogram of the distribution p{vy) of stability parameters for
N =200 and « ranging from 0.6-1.0 (step size «: 0.1). For a =1 the inverse of a
correlation matrix is replaced by the pseudo-inverse, according to (9). Clearly, for
N =200 both the n=0 and the n=1 matrix yield stability parameters which are
significantly larger than the corresponding quantities of the projector matrix. Figure
1 also indicates that the transition from the & <_1 regime to the a > 1 regime is less
dramatic for the n=0 and n=1 matrices than for the projector matrix. This is
emphasized by figure 2, which shows the distributions of the stability parameters near
the ¢ritical point & =1.

n=0
0 Y 1
n=1 '
- ik
W ¥ 1
Prajector ﬂH m
/

I'Iu JEJ n_| n In
P nt et kel I
0 ¥ 1

Figure 1. Distribution p{y} of stabilities for N = 200 and randomly drawn patterns. From
left to right: =10, a =0.9, a =0.8, a =07, a =0.6.

Figure 2 shows that above the critical point o =1 all matrices fail (since all y's
were required to-be positive). The distribution p(y) of the projector matrix becomes
practically flat as soon as the patterns become linearly dependent; for the n =0 and
n =1 matrices the collapse is less dramatic. However, one cannot yet conclude that
the latter matrices do not belong to the universality class of the projector rule; such a
conclusion could only be drawn if a detailed study wete to be made of the N-dependence
of the distributions p(v). The proposed constructions are still far from being the
optimal connection matrix: this can be seen if one compares the results shown in
figures 1 and 2 with the N - smallest stability y..(a) of the optimal matrix, as
given by Gardner's [5] expression:

o0 dz . . "
—exp{—a3z minl@) 2 =a™,
J.fv.“i,.(m\fz” PL=32) ()
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n=0 n=1 Projector

a=0.98 L1 — ,J

S S|

o=1.00 //L A .
a—

x=1.01

021,07 et L
- 0 x t oA 0 ¥ 1 - 0 X 1

Figure 2. Distribution p{y) of stabilities for N =200 and randomly drawn patterns near
the critical point a =1.

This expression predicts ¥min{0.6)=~0.875, 1,i.{0.7)=0.747, ¥min(0.8) =0.640,
Ymin(0.9) =0.549 and y,,;,(1.0)=0.471,

Finally we studied the behaviour of the average stability ¥ (the average over all
patterns and all sites). In figure 3 we have drawn the average of this quantity ¥ over
two N =200 trials for e €[0, 1]. For a <0.5 the difference between the results of the
three models is negligible. For & > 0.5, however, the n =0 and n =1 curves are again

1 1 - T T T T

ta) 7

ol

L 1
0.6 08 1.0
[+ 4

Figure 3. Average stability ¥ for N =200 as a function of o (averaged over two trials of
randomly drawn patterns and over all site- and patiern-indices) for n =1 matrix {upper
curve), n=0 matrix {middle curve) and projector rule (tower curve). (a} a<€[0,1};
(b} close-up near the critical point.
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clearly above the projector matrix curve (the » =1 average stability being highest).
Nevertheless, in all three cases ¥ >0 for a - 1.

6. Optimal symmetry breaking

According to (15), in the regime of linearly independent patterns optimat interactions
are found by solving the optimization problem:

Qle)=(1,...,1) - Ae +3£- Ae is minimal (24)
g, =0 forall u, dp: e, =0,

All local minima of @Q are solutions of
Vp:(£p=0 and EAF,,\(EA-i-l)?-O) or (s‘,>0 and ZAp,\(e,\+1)=0). (25)
A A

There can only be one local minimum, for if we assume that at least two such minima
e’ and £" exist, then we can construct a path £(A) from £’ to £” (the allowed region
is convex)

e(AM}y=e"+A(e"—€") Ae[0,1]
QA)=Q(0)+A(e"— &) A((1,..., 1)+ &) +iA e"— eV A(e"— ).

It is clear that (J(A) can never have a local maximum, which it would have had if both
A=0and A =1 were to correspond to lecal minima of . We can conclude that there
can only be one local minimum, so there is only one solution of (25). The corresponding
value of Q would be Q(e)=1e-A(1,...,1). We will now denote by S the set of all
indices u for which &, = 0. If we write Ag for the { p —|S8}) x( p—|5]) matrix which can
be constructed from A by taking only entries corresponding to indices which are not
in the set §, we find

pES £, =— T (Ag')w(g Aw\)

ve S

p€ S: g, =0 (by definition) (26)
{note that A being positive definite implies that Ag is invertible), We can now write
our problem as follows: find the unique index set S for which (26) is the solution of
(25), or

peS:T AN ¥ AM(A;‘)M(ZAW)
A "

AvES

pES: ¥ (A;‘)p,,(z AM) <Q.
ve s A

Since there is only one local minimum of @ we can also find this minimum as the

fixed point of the differential equation which describes constrained gradient descent

on the surface Q

d

P —(Ale+(1,..., DD (87 (e )+ (1-07(e N7 (~(Ale +(1,..., DL (27)
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where
67 (x)=0 forx=0
8 (x)=1 for x> 0.

Close inspection reveals that the n=1 matrix, defined in section 4, can in fact be
obtained from (27) by choosing as an estimate of the fixed point a vector proportional
to (d/dt)e|,-, (taking €(0) =0). Unfortunately we were not able to find an analytical
expression for the fixed-point of (27).

The optimization problem (24) is equivalent to the one formulated by Opper [10]:
however, the physical meaning of the solution is different. In [10] the trivial critical
point & =0 corresponds to the matrix J; =0, whereas in (24) the trivial critical point
corresponds to the projector matrix.

7. Discussion

Using a normal form we have derived analytical expressions for neural interaction
matrices which improve upon the projector rule, restricting ourselves to the regime of
linearly independent patterns. We have numerically compared the outcome of these
matrices with the outcome of the projector rule with respect to the distribution of the
stability parameters and the average stability (for N =200 and randomly drawn pat-
terns). The results indicate that the improvement obtained is most significant near the
critical point @ =1. Finally we have used the normal form to show that optimal
interactions correspond to the unique fixed-point of a nonlinear differential equation,
of which the ¢ =0 flow direction is directly related to one of the proposed matrices.

The proposed constructions may serve as a first step towards finding an analytical
expression for optimal interactions. A next step could be either to further elaborate
our scheme for breaking the pattern symmetry in the regime of linearly independent
patterns, or to try to find an extension of the proposed constructions in order to handle
linearly dependent patterns. It would also be interesting to see how our matrices deal
with biased patterns and to find out, in the limit of extreme bias, how they compare
with powerful models like the one formulated by Willshaw [17-19].
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